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The incremental work of total deformation is 

(4.16) 

The incremental work of elastic deformation is 

(4.17) 

The incremental work of plastic deformation is obtained by subtracting equation (4.17) from 
equation (4.16): 

(4.18) 

where d'YP 
: (dE/ - dE/)/2. 

If we assume that there is always an elastically-strained state imbedded in every deformed 
state, and that this elastic state is inherently reversible and recoverable, it follows that an 
internal energy function exists which depends on elastic strains, entropy, and perhaps internal 
variables. Neglecting internal variables, increments in the internal energy function can be 
written [19] 

de: TdS+dw •. (4.19) 

According to equation (4.19) and the foregoing assumptions, internal energy can be expres
sed in terms of entropy and the elastic strains. For example, 

e : e(S, E ... E/), (4.20) 

The appearance of E/ in this potential is illusory. It does not imply a physical dependence of e 
on plastic strain. Nonetheless, (ae/aE/) •• S exists and must be counted in applications. 

Referring now to equation (4.1), we have f,: E/, Px : p*, a*: a, 1*: (apJaS)p .• p' a*: 
-2/L, where /L is the rigidity modulus. Comparing equations (4.2) and (4.8) we have .1/*: O. 
Equations (4.5) and (4.20) give 1/ : -2v'T. Then equation (4.7) becomes, with dq/dt : 0, 

(4.21) 

Since 'T is equal to half the yield stress, the effect of including the thermal variables is to slightly 
... decrease the effective relaxation function [20], 

(ti) Phase transitions in liquids. These have been treated in detail elsewhere [21,22]. In the 
present formalism, if A is the fraction of material in phase 2, the parameters of equation (4.1) 
are [23]: 

where 

1 (av) 
'Y:; aT p,).' 

Cp). : (1- A)CP1 + ACPl, 

Cpj : sp. heat at constant pressure of phase i, 

1 (av) {3: -; ap , 
T.). 

f* : 'YV2/({3vCp). - 'Y2v2T), 

a*: api : 'Yvr~S- Cp).~v 
aA v,s 'Y v T - {3vCp). 

(4.22) 

(4.23) 

(4.24) 
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Equation (4.2) is unchanged: IV = - P*i;, i.e . .,,* = O. Equation (4.3) becomes 

e = - Pi; + TS + (1-'2 - 1-',). 

where 1-'. and 1-'2 are the chemical potentials of phases 1 and 2. Then 

." =1-'2-1-'. · (4.25) 

In equation (4.7), p~ = Px = P, .,,* = 0, a*, f*, a* and." are given by equations (4.22)-(4.25). 

5. DISCUSSION 

Equations (3.5) and (4.7) show the effect~ of introducing a variable other than v and S in the 
constitutive equation of material through which a plane wave is passing. The consequence is 
always to add an additional term to the p, p, S relation. This additional term is carried through 
the flow equations and invariably introduces 'Maxwell attenuation' into the shock decay 
process. The existence of this term does not depend on the additional process being dissipative, 
though its coefficient is enhanced by dissipation, which causes flow behind the shock to be entropic. 

The fundamental reason for this effect lies in the fact that there are but three equations to 
describe continuum flow and four variables, p, p, S, u. A single constitutive relation then 
provides a soluble set, as long as no new variable is introduced. If it is, it must be carried 
through the equations in an ad hoc way. Only if another constitutive relation and a correspond
ing differential equation are added, can this situation be avoided. For example, if electric 
displacement is added, as in equation (3.20), the Maxwell-like term can be eliminated if an 
additional constitutive relation and the appropriate electromagnetic equations are added. 

When the extra variable is a density derivative, as for the viscous fluid, a curious situation 
arises. One can proceed, in principle, to combine the constitutive relation, equation (3.21), with 
the flow equations, eliminate p and u, and solve the resulting third order equation for p. But in 
so doing the utility of heuristic understanding of wave propagation problems is lost and the new 
problem stands in isolation. Yet one feels that the problem as stated is stilI essentially a wave 
propagation problem, and that only a little tinkering with the mathematical apparatus of wave 
propagation should provide understanding. This view may be wrong; certainly it has not yet 
yielded an estimate of the importance of viscous attenuation in the shock decay process or a 
satisfactory description of its interaction with hydrodynamic attenuation. 

The reader should be aware that an extensive literature exists of which the principal purpose 
is to determine the entire propagation history of decaying shock waves, principally in gases. 
The problem has little relation to the one discussed here, but the interested reader can gain 
entry to the literature through Ref. [9, p. 160]. 
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